Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Cell Commun Signal ; 22(1): 145, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388432

RESUMO

BACKGROUND: ZEB1, a core transcription factor involved in epithelial-mesenchymal transition (EMT), is associated with aggressive cancer cell behavior, treatment resistance, and poor prognosis across various tumor types. Similarly, the expression and activity of CD73, an ectonucleotidase implicated in adenosine generation, is an important marker of tumor malignancy. Growing evidence suggests that EMT and the adenosinergic pathway are intricately linked and play a pivotal role in cancer development. Therefore, this study focuses on exploring the correlations between CD73 and ZEB1, considering their impact on tumor progression. METHODS: We employed CRISPR/Cas9 technology to silence CD73 expression in cell lines derived from papillary thyroid carcinoma. These same cells underwent lentiviral transduction of a reporter of ZEB1 non-coding RNA regulation. We conducted studies on cell migration using scratch assays and analyses of cellular speed and polarity. Additionally, we examined ZEB1 reporter expression through flow cytometry and immunocytochemistry, complemented by Western blot analysis for protein quantification. For further insights, we applied gene signatures representing different EMT states in an RNA-seq expression analysis of papillary thyroid carcinoma samples from The Cancer Genome Atlas. RESULTS: Silencing CD73 expression led to a reduction in ZEB1 non-coding RNA regulation reporter expression in a papillary thyroid carcinoma-derived cell line. Additionally, it also mitigated ZEB1 protein expression. Moreover, the expression of CD73 and ZEB1 was correlated with alterations in cell morphology characteristics crucial for cell migration, promoting an increase in cell polarity index and cell migration speed. RNA-seq analysis revealed higher expression of NT5E (CD73) in samples with BRAF mutations, accompanied by a prevalence of partial-EMT/hybrid state signature expression. CONCLUSIONS: Collectively, our findings suggest an association between CD73 expression and/or activity and the post-transcriptional regulation of ZEB1 by non-coding RNA, indicating a reduction in its absence. Further investigations are warranted to elucidate the relationship between CD73 and ZEB1, with the potential for targeting them as therapeutic alternatives for cancer treatment in the near future.


Assuntos
Neoplasias da Glândula Tireoide , Fatores de Transcrição , Humanos , Câncer Papilífero da Tireoide , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , RNA não Traduzido , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
2.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334041

RESUMO

Cells have evolved intricate mechanisms for dividing their contents in the most symmetric way during mitosis. However, a small proportion of cell divisions results in asymmetric segregation of cellular components, which leads to differences in the characteristics of daughter cells. Although the classical function of asymmetric cell division (ACD) in the regulation of pluripotency is the generation of one differentiated daughter cell and one self-renewing stem cell, recent evidence suggests that ACD plays a role in other physiological processes. In cancer, tumor heterogeneity can result from the asymmetric segregation of genetic material and other cellular components, resulting in cell-to-cell differences in fitness and response to therapy. Defining the contribution of ACD in generating differences in key features relevant to cancer biology is crucial to advancing our understanding of the causes of tumor heterogeneity and developing strategies to mitigate or counteract it. In this Review, we delve into the occurrence of asymmetric mitosis in cancer cells and consider how ACD contributes to the variability of several phenotypes. By synthesizing the current literature, we explore the molecular mechanisms underlying ACD, the implications of phenotypic heterogeneity in cancer, and the complex interplay between these two phenomena.


Assuntos
Divisão Celular Assimétrica , Neoplasias , Humanos , Mitose/genética , Neoplasias/genética , Células-Tronco , Diferenciação Celular
3.
J Cell Biochem ; 125(2): e30517, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224178

RESUMO

Colorectal cancer (CRC) is the third most common and deadliest cancer globally. Regimens using 5-fluorouracil (5FU) and Oxaliplatin (OXA) are the first-line treatment for CRC, but tumor recurrence is frequent. It is plausible to hypothesize that differential cellular responses are triggered after treatments depending on the genetic background of CRC cells and that the rational modulation of cell tolerance mechanisms like autophagy may reduce the regrowth of CRC cells. This study proposes investigating the cellular mechanisms triggered by CRC cells exposed to 5FU and OXA using a preclinical experimental design mimicking one cycle of the clinical regimen (i.e., 48 h of treatment repeated every 2 weeks). To test this, we treated CRC human cell lines HCT116 and HT29 with the 5FU and OXA, combined or not, for 48 h, followed by analysis for two additional weeks. Compared to single-drug treatments, the co-treatment reduced tumor cell regrowth, clonogenicity and stemness, phenotypes associated with tumor aggressiveness and poor prognosis in clinics. This effect was exerted by the induction of apoptosis and senescence only in the co-treatment. However, a week after treatment, cells that tolerated the treatment had high levels of autophagy features and restored the proliferative phenotype, resembling tumor recurrence. The pharmacologic suppression of early autophagy during its peak of occurrence, but not concomitant with chemotherapeutics, strongly reduced cell regrowth. Overall, our experimental model provides new insights into the cellular mechanisms that underlie the response and tolerance of CRC cells to 5FU and OXA, suggesting optimized, time-specific autophagy inhibition as a new avenue for improving the efficacy of current treatments.


Assuntos
Neoplasias Colorretais , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Colorretais/genética , Recidiva Local de Neoplasia , Células HT29 , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Autofagia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética
4.
Exp Cell Res ; 433(2): 113825, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866459

RESUMO

Metabolic adaptations are central for carcinogenesis and response to therapy, but little is known about the contribution of mitochondrial dynamics to the response of glioma cells to the standard treatment with temozolomide (TMZ). Glioma cells responded to TMZ with mitochondrial mass increased and the production of round structures of dysfunctional mitochondria. At single-cell level, asymmetric mitosis contributed to the heterogeneity of mitochondrial levels. It affected the fitness of cells in control and treated condition, indicating that the mitochondrial levels are relevant for glioma cell fitness in the presence of TMZ.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Dacarbazina/farmacologia , Dacarbazina/metabolismo , Dacarbazina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Mitocôndrias/metabolismo , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos
5.
Exp Cell Res ; 430(1): 113715, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429373

RESUMO

In cancer, cell migration contributes to the spread of tumor cells resulting in metastasis. Heterogeneity in the migration capacity can produce individual cells with heightened capacity leading to invasion and metastasis. Our hypothesis is that cell migration characteristics can divide asymmetrically in mitosis, allowing a subset of cells to have a larger contribution to invasion and metastasis. Therefore, our aim is to elucidate whether sister cells have different migratory capacity and analyze if this difference is defined by mitosis. Through time-lapse videos, we analyzed migration speed, directionality, maximum displacement of each trajectory, and velocity as well as cell area and polarity and then compared the values between mother-daughter cells and between sister cells of three tumor cell lines (A172, MCF7, SCC25) and two normal cell lines (MRC5 and CHO·K1 cells). We observed that daughter cells had a different migratory phenotype compared to their mothers, and one single mitosis is enough for the sisters behave like nonrelated cells. However, mitosis did not influence cell area and polarity dynamics. These findings indicates that migration performance is not heritable, and that asymmetric cell division might have an important impact on cancer invasion and metastasis, by producing cells with different migratory capacity.


Assuntos
Mitose , Células-Tronco , Movimento Celular , Divisão Celular Assimétrica , Linhagem Celular Tumoral
6.
Genes (Basel) ; 14(4)2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37107559

RESUMO

Precision and organization govern the cell cycle, ensuring normal proliferation. However, some cells may undergo abnormal cell divisions (neosis) or variations of mitotic cycles (endopolyploidy). Consequently, the formation of polyploid giant cancer cells (PGCCs), critical for tumor survival, resistance, and immortalization, can occur. Newly formed cells end up accessing numerous multicellular and unicellular programs that enable metastasis, drug resistance, tumor recurrence, and self-renewal or diverse clone formation. An integrative literature review was carried out, searching articles in several sites, including: PUBMED, NCBI-PMC, and Google Academic, published in English, indexed in referenced databases and without a publication time filter, but prioritizing articles from the last 3 years, to answer the following questions: (i) "What is the current knowledge about polyploidy in tumors?"; (ii) "What are the applications of computational studies for the understanding of cancer polyploidy?"; and (iii) "How do PGCCs contribute to tumorigenesis?"


Assuntos
Células Gigantes , Recidiva Local de Neoplasia , Humanos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Células Gigantes/metabolismo , Células Gigantes/patologia , Poliploidia , Biologia Computacional
7.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594556

RESUMO

Cancer cells have heterogeneous fitness, and this heterogeneity stems from genetic and epigenetic sources. Here, we sought to assess the contribution of asymmetric mitosis (AM) and time on the variability of fitness in sister cells. Around one quarter of sisters had differences in fitness, assessed as the intermitotic time (IMT), from 330 to 510 min. Phenotypes related to fitness, such as ERK activity (herein referring to ERK1 and ERK2, also known as MAPK3 and MAPK1, respectively), DNA damage and nuclear morphological phenotypes were also asymmetric at mitosis or turned asymmetric over the course of the cell cycle. The ERK activity of mother cell was found to influence the ERK activity and the IMT of the daughter cells, and cells with ERK asymmetry at mitosis produced more offspring with AMs, suggesting heritability of the AM phenotype for ERK activity. Our findings demonstrate how variabilities in sister cells can be generated, contributing to the phenotype heterogeneities in tumor cells.


Assuntos
Divisão do Núcleo Celular , Mitose , Mitose/genética , Ciclo Celular , Fosforilação , Células-Tronco
9.
Toxicol In Vitro ; 85: 105472, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116745

RESUMO

Vincristine (VCR) is a classical chemotherapeutic that has been revisited to treat refractory solid tumors producing encouraging results. VCR binds to tubulin and decreases the rate of microtubule dynamics, thus triggering many cellular responses and behaviors. However, the dynamics of these responses and fates are uncharacterized. This study combined systems biology approaches with acute and long-term in vitro experiments to predict key pathways and mechanisms associated with cell fates during and after VCR treatment. Glioblastoma (GBM) cells were treated with clinically relevant doses of VCR, and interconnected cell fates were explored. A correlation matrix based on experimental cell analysis reported strong negative correlations between cell number, nuclear irregularities, senescence, or apoptosis, depending on the cells' genetic makeup and treatment regimen. P53 would be essential in all analyzed processes according to topological network analysis. Furthermore, despite the high acute sensitivity, both cell lines re-growth in the long term after a single VCR treatment, especially in those populations with high levels of autophagy. These multiple responses may also be triggered in patients' exposed tumors, which should be considered to allow the rational design of VCR protocols, including modulators of the cell fates and pathways mentioned above.


Assuntos
Glioblastoma , Humanos , Apoptose , Patrimônio Genético , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Tubulina (Proteína) , Proteína Supressora de Tumor p53/genética , Vincristina/farmacologia , Senescência Celular , Mitose
10.
Cell Biol Int ; 46(11): 1787-1800, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35971753

RESUMO

Caveolin-1 (Cav-1) is an integral membrane protein present in all organelles, responsible for regulating and integrating multiple signals as a platform. Mitochondria are extremely adaptable to external cues in chronic liver diseases, and expression of Cav-1 may affect mitochondrial flexibility in hepatic stellate cells (HSCs) activation. We previously demonstrated that exogenous expression of Cav-1 was sufficient to increase some classical markers of activation in HSCs. Here, we aimed to evaluate the influence of exogenous expression and knockdown of Cav-1 on regulating the mitochondrial plasticity, metabolism, endoplasmic reticulum (ER)-mitochondria distance, and lysosomal activity in HSCs. To characterize the mitochondrial, lysosomal morphology, and ER-mitochondria distance, we perform transmission electron microscope analysis. We accessed mitochondria and lysosomal networks and functions through a confocal microscope and flow cytometry. The expression of mitochondrial machinery fusion/fission genes was examined by real-time polymerase chain reaction. Total and mitochondrial cholesterol content was measured using Amplex Red. To define energy metabolism, we used the Oroboros system in the cells. We report that GRX cells with exogenous expression or knockdown of Cav-1 changed mitochondrial morphometric parameters, OXPHOS metabolism, ER-mitochondria distance, lysosomal activity, and may change the activation state of HSC. This study highlights that Cav-1 may modulate mitochondrial function and structural reorganization in HSC activation, being a potential candidate marker for chronic liver diseases and a molecular target for therapeutic intervention.


Assuntos
Caveolina 1 , Células Estreladas do Fígado , Caveolina 1/genética , Caveolina 1/metabolismo , Colesterol/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/patologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo
11.
Purinergic Signal ; 18(4): 481-494, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35939198

RESUMO

Glioblastoma (GBM) is the most aggressive and lethal among the primary brain tumors, with a low survival rate and resistance to radio and chemotherapy. The P2Y12 is an adenosine diphosphate (ADP) purinergic chemoreceptor, found mainly in platelets. In cancer cells, its activation has been described to induce proliferation and metastasis. Bearing in mind the need to find new treatments for GBM, this study aimed to investigate the role of the P2Y12R in the proliferation and migration of GBM cells, as well as to evaluate the expression of this receptor in patients' data obtained from the TCGA data bank. Here, we used the P2Y12R antagonist, ticagrelor, which belongs to the antiplatelet agent's class. The different GBM cells (cell line and patient-derived cells) were treated with ticagrelor, with the agonist, ADP, or both, and the effects on cell proliferation, colony formation, ADP hydrolysis, cell cycle and death, migration, and cell adhesion were analyzed. The results showed that ticagrelor decreased the viability and the proliferation of GBM cells. P2Y12R antagonism also reduced colony formation and migration potentials, with alterations on the expression of metalloproteinases, and induced autophagy in GBM cells. Changes were observed at the cell cycle level, and only the U251 cell line showed a significant reduction in the ADP hydrolysis profile. TCGA data analysis showed a higher expression of P2Y12R in gliomas samples when compared to the other tumors. These data demonstrate the importance of the P2Y12 receptor in gliomas development and reinforce its potential as a pharmacological target for glioma treatment.


Assuntos
Glioblastoma , Humanos , Ticagrelor/metabolismo , Ticagrelor/farmacologia , Difosfato de Adenosina/metabolismo , Glioblastoma/tratamento farmacológico , Plaquetas , Autofagia , Proliferação de Células , Receptores Purinérgicos P2Y12/metabolismo , Antagonistas do Receptor Purinérgico P2Y/metabolismo
12.
Semin Cancer Biol ; 86(Pt 2): 202-213, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779713

RESUMO

Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations being in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and the adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias da Próstata , Masculino , Humanos , Movimento Celular , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Neoplasias da Próstata/patologia
13.
Biochem Soc Trans ; 50(1): 513-527, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35166330

RESUMO

Tracking individual cells has allowed a new understanding of cellular behavior in human health and disease by adding a dynamic component to the already complex heterogeneity of single cells. Technically, despite countless advances, numerous experimental variables can affect data collection and interpretation and need to be considered. In this review, we discuss the main technical aspects and biological findings in the analysis of the behavior of individual cells. We discuss the most relevant contributions provided by these approaches in clinically relevant human conditions like embryo development, stem cells biology, inflammation, cancer and microbiology, along with the cellular mechanisms and molecular pathways underlying these conditions. We also discuss the key technical aspects to be considered when planning and performing experiments involving the analysis of individual cells over long periods. Despite the challenges in automatic detection, features extraction and long-term tracking that need to be tackled, the potential impact of single-cell bioimaging is enormous in understanding the pathogenesis and development of new therapies in human pathophysiology.


Assuntos
Células-Tronco , Diferenciação Celular , Humanos
14.
Biochem Biophys Res Commun ; 601: 24-30, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35220010

RESUMO

Glioblastoma (GBM) is the most lethal among malignant gliomas. The tumor invasiveness and therapy-resistance are important clinical hallmarks. Growing evidence emphasizes the purinergic signaling contributing to tumor growth. Here we exposed a potential role of extracellular ATPase activity as a key regulator of temozolomide cytotoxicity and the migration process in GBM cells. The inhibition of ATP hydrolysis was able to improve the impact of temozolomide, causing arrest mainly in S and G2 phases of the cell cycle, leading M059J and U251 cells to apoptosis. In addition to eradicating GBM cells, ATP hydrolysis exhibited a potential to modulate the invasive phenotype and the expression of proteins involved in cell migration and epithelial-to-mesenchymal-like transition in a 3D culture model. Finally, we suggest the ATPase activity as a key target to decline temozolomide resistance and the migratory phenotype in GBM cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/farmacologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/patologia , Humanos , Hidrólise , Fenótipo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
15.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197283

RESUMO

Alkylating agents damage DNA and proteins and are widely used in cancer chemotherapy. While cellular responses to alkylation-induced DNA damage have been explored, knowledge of how alkylation affects global cellular stress responses is sparse. Here, we examined the effects of the alkylating agent methylmethane sulfonate (MMS) on gene expression in mouse liver, using mice deficient in alkyladenine DNA glycosylase (Aag), the enzyme that initiates the repair of alkylated DNA bases. MMS induced a robust transcriptional response in wild-type liver that included markers of the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) known to be controlled by XBP1, a key UPR effector. Importantly, this response is significantly reduced in the Aag knockout. To investigate how AAG affects alkylation-induced UPR, the expression of UPR markers after MMS treatment was interrogated in human glioblastoma cells expressing different AAG levels. Alkylation induced the UPR in cells expressing AAG; conversely, AAG knockdown compromised UPR induction and led to a defect in XBP1 activation. To verify the requirements for the DNA repair activity of AAG in this response, AAG knockdown cells were complemented with wild-type Aag or with an Aag variant producing a glycosylase-deficient AAG protein. As expected, the glycosylase-defective Aag does not fully protect AAG knockdown cells against MMS-induced cytotoxicity. Remarkably, however, alkylation-induced XBP1 activation is fully complemented by the catalytically inactive AAG enzyme. This work establishes that, besides its enzymatic activity, AAG has noncanonical functions in alkylation-induced UPR that contribute to cellular responses to alkylation.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , Desdobramento de Proteína , Alquilação , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Estresse do Retículo Endoplasmático , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Proteína 1 de Ligação a X-Box/metabolismo
16.
STAR Protoc ; 3(4): 101855, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595941

RESUMO

The muscle fiber morphometric analysis (MusMA) is a protocol to segment and characterize the morphometry of individual cross-sectioned striated muscle fibers. Using a semi-automated Excel spreadsheet, the protocol allows the objective measurement of muscle fibers' subpopulations, aiming to characterize physiopathological conditions related to muscle tissue. The main limitation of MusMA is the need for high-quality tissue slides and images and control samples to set up the analyses.


Assuntos
Fibras Musculares Esqueléticas , Camundongos , Animais , Modelos Animais de Doenças
17.
Cancer Res ; 82(1): 3-11, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785576

RESUMO

Heterogeneity is a pervasive feature of cancer, and understanding the sources and regulatory mechanisms underlying heterogeneity could provide key insights to help improve the diagnosis and treatment of cancer. In this review, we discuss the origin of heterogeneity in the phenotype of individual cancer cells. Genotype-phenotype (G-P) maps are widely used in evolutionary biology to represent the complex interactions of genes and the environment that lead to phenotypes that impact fitness. Here, we present the rationale of an extended G-P (eG-P) map with a cone structure in cancer. The eG-P cone is formed by cells that are similar at the genome layer but gradually increase variability in the epigenome, transcriptome, proteome, metabolome, and signalome layers to produce large variability at the phenome layer. Experimental evidence from single-cell-omics analyses supporting the cancer eG-P cone concept is presented, and the impact of epimutations and the interaction of cancer and tumor microenvironmental eG-P cones are integrated with the current understanding of cancer biology. The eG-P cone concept uncovers potential therapeutic strategies to reduce cancer evolution and improve cancer treatment. More methods to study phenotypes in single cells will be the key to better understand cancer cell fitness in tumor biology and therapeutics.


Assuntos
Genômica/métodos , Neoplasias/genética , Humanos , Fenótipo
18.
Stem Cell Rev Rep ; 18(4): 1495-1509, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34403074

RESUMO

Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.


Assuntos
Glioblastoma , Tecido Adiposo/metabolismo , Animais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Glioblastoma/genética , Glioblastoma/terapia , Necrose , Ratos , Células Estromais/metabolismo
19.
Oncotarget ; 12(19): 1962-1965, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34548913

RESUMO

The question of whether cancer recurrence is mediated by a process that is exclusively Darwinian or that involves both Darwinian and Lamarckian processes is long standing and far from answered. The major open question is the origin of variation, whether it relays exclusively on stable, mostly genetic, mechanisms or whether it can also involve dynamic processes. Recent evidence with single-cell epigenomic and transcriptomic profiling and measurement of phenotypes in colonies indicate that several phenotypes quickly change with a few cell divisions. Most importantly, cell fitness under basal as well as in the presence of chemotherapeutic agents changes considerably over short periods of time and this dynamic is reduced by epigenetic modulators. These studies contribute to establish the dynamic nature of fitness and are key for the interplay between cancer cell dynamics and stable genetic and epigenetic alterations in the survival of a few cancer cells after therapy.

20.
Genet Mol Biol ; 44(3): e20200390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34352067

RESUMO

Cryptococcus neoformans and Cryptococcus gattii are the etiological agents of cryptococcosis, a high mortality disease. The development of such disease depends on the interaction of fungal cells with macrophages, in which they can reside and replicate. In order to dissect the molecular mechanisms by which cryptococcal cells modulate the activity of macrophages, a genome-scale comparative analysis of transcriptional changes in macrophages exposed to Cryptococcus spp. was conducted. Altered expression of nearly 40 genes was detected in macrophages exposed to cryptococcal cells. The major processes were associated with the mTOR pathway, whose associated genes exhibited decreased expression in macrophages incubated with cryptococcal cells. Phosphorylation of p70S6K and GSK-3ß was also decreased in macrophages incubated with fungal cells. In this way, Cryptococci presence could drive the modulation of mTOR pathway in macrophages possibly to increase the survival of the pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...